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Abstract

Physiological machine learning methods have a unique
opportunity to augment deep-learning engineered features
with additional features derived from prior pathological
knowledge. We propose an phonocardiogram (PCG) clas-
sifier that combines raw spectrogram features with crafted,
physician-inspired features with an end-to-end neural net-
work architecture. Learned spectrogram features were ob-
tained by training a convolutional neural network (CNN)
directly on the raw mel-spectrogram representation of the
PCG time-series. Crafted features were based on the four
stages of the cardiac cycle (S1, systole, S2, and diastole).

The spectrogram features have the advantage of intro-
ducing flexibility for the model to learn abstract, low-
level information that captures a variety of different rhyth-
mic abnormalities and the latter has the advantage of us-
ing segmentation to elucidate specific, high-level, human-
interpretable information. Combined features are fed into
a fully connected neural network which is able to learn the
relationship between the two feature types. In the George
B. Moody PhysioNet Challenge 2022 test set, our team
(”lubdub”) received a weighted accuracy score of 0.835
with a cost of 14905 in the clinical outcome task (ranked
31/39). For the murmur prediction task, our model re-
ceived a weighted accuracy score of 0.525 and a cost of
15083 (ranked 33/40).

1. Introduction

Auscultation of heart sounds for murmurs is vital in
identifying cardiovascular disorders in children. In re-
gions with lack of infrastructure or access to cardiology
specialists, a non-invasive assessment of heart sounds via
phonocardiogram (PCG) can provide life-saving informa-
tion for pediatric patients with congenital or acquired heart
disease. The analyzed data, provided by the Moody Chal-
lenge 2022, consisted of PCG recordings from 1568 pedi-
atric patients collected in northeastern Brazil [1–3].

Ensemble models that combine information across raw
and curated feature types have found broad success, such
as in the winners 2016 and 2020 George B. Moody Phy-
sioNet Challenges [4, 5]. We hypothesize that the neural
network will be able to learn to identify heart murmur pat-
terns within the time-frequency domain paired with our
physician-inspired, human-interpretable information.

2. Methods

2.1. Preprocessing

For each patient, there were at most four PCG record-
ings that were recorded at the four classic auscultation lo-
cations on the chest corresponding to the aortic, pulmonic,
tricuspid, and mitral valves of the heart. The samples are
downsampled from 4000 to 1000 Hz, as we found that
1000 hz was a dense enough sampling rate to preserve
PCG morphology and frequency information, while not
being too dense for machine learning models. We then
followed up with standard signal preprocessing techniques
with a 25Hz highpass to remove low frequency interfer-
ence and 400Hz lowpass 2nd order Butterworth filter in
order to remove high frequency noise [6].

We followed the procedure outlined by [7] to re-
move outlier spikes by first dividing the recording into
500ms windows, finding the maximum absolute amplitude
(MAA) in each window, and identifying samples where at
least one MAA was greater than three times the median
value of the MAAs in the entire sample. In these iden-
tified samples, the max noise spike was found to be the
max point in the outlier MAA. The beginning and end of
the spike were found by identifying the last zero-crossing
point before the max point and the first zero-crossing after
the max point, respectively.

2.2. CNN on Spectrogram Features

These time-series are then transformed into mel-
spectrogram and concatenated to be used as inputs into a
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Figure 1. Network architecture. The PCG recording is used to extract both physician-inspired features and a mel-
spectrogram. The spectrogram is input to a CNN containing three convolutional layers and two fully connected layers.
Both the output of the CNN and the physician-inspired feature vector are concatenated and input into a fully connected
neural network with a final softmax layer to predict the label of the recording.

CNN used for embedding the time-series. Specifically, this
block is composed of three sequential blocks of a convolu-
tion layer, leaky relu, max-pooling, and dropout. The intu-
ition of this is that unlike Recurrent Neural Network-based
architectures, such as LSTMs, which seek to model infor-
mation from each time-point individually in a memory, the
convolutional nature allows us to capture and model mor-
phological information more readily without any potential
vanishing gradient issues or information lost across time
[8]. Following this, we take the CNN-embed time-series
and synthesize information from long-term dependencies
with two fully-connected layers to model any potential
long-term temporal dependencies. Batch normalization is
applied after each block of layers to make training faster
and more stable.

2.3. Physician-inspired Features

Recordings were segmented into key components of the
cardiac cycle (S1, systolic interval, S2, and diastolic inter-
vals) using a pre-trained logistic regression, hidden semi-
Markov model with a modified Viterbi decoding algorithm
[6]. [6] proposes a segmentation method that is robust to
in-band noise, stemming from speech interference, mo-
tion artifacts, physiological sounds, etc., without the use
of a separate reference signal, such as ECG, as the ground
truth. A nonergodic hidden semi-markov model was used
in order to incorporate prior information about how state
transitions are allowed to occur and expected duration of
each state, which each state represents one of the four heart
sounds. A logistic regression issue was used to model
emission probabilities, allowing for a greater discrimina-

tion between being in a given state.

The first and second heart sounds (S1 and S2) heard
through a stethoscope are commonly used by physicians
to identify and classify pathological murmurs before fur-
ther medical intervention [9]. In the cardiac cycle, the first
heart sound corresponds to the closing of the mitral and
tricuspid valves while the second heart sound corresponds
to the closing of the aortic and pulmonic valves. The heart
actively pumps blood into the circulation during the time
interval between S1 and S2 (systole) and is filled again by
returning blood in the interval between S2 and S1 (dias-
tole). Increased blood flow, either forwards or backwards,
or a defective valve often results in murmurs [10]. Mur-
murs are traditionally classified based on their amplitude
and timing in relation to S1 and S2. Despite the rising
popularity of point-of-care ultrasound in identifying car-
diac defects, the stethoscope remains the fastest, cheapest,
and most universally accessible tool in recognizing cardiac
pathology [11]. Automatic interpretation of auscultation
results is especially vital in resource-poor health systems
that may lack more advanced technology or the trained ear
of a cardiologist.

The mean, median, and standard deviation of these car-
diac cycle intervals as well as between these intervals were
then calculated as summary statistics. Separately, we used
discrete Fourier transform to calculate frequency domain
features for each segmented window. For 10 Hz frequency
bands between 30 and 800, the spectra of S1, systole, S2,
and diastole were calculated [12]. Because murmurs are
often due to an underlying structural issue persistent within
the cardiac cycle and will continuously affect a given heart-
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Figure 2. 6-fold cross-validation results of our method on
the George B. Moody PhysioNet 2022 Challenge dataset.
Within 10 epochs, accuracy converged to an unweighted
training accuracy of 73.8% and validation accuracy of
73.6%.

sound region, summary statistics were used here to consol-
idate information about each of the intervals. [13]

These crafted features based on the cardiac cycle were
concatenated with the spectrogram learned features and
fed into a fully connected network with a softmax layer
with cross-entropy to predict the label of the recording
for both the murmur detection challenge and the clini-
cal outcome prediction challenge. The full network ar-
chitecture can be found in Figure 1. The murmur detec-
tion challenge included three classes (”Present”, ”Absent”,
and ”Unknown”) while the clinical outcome challenge in-
cluded two (”Abnormal” and ”Normal”).

3. Results

3.1. Cross-validation

Here we report the 6-fold cross-validation performance
of our method on the George B. Moody PhysioNet 2022
Challenge dataset (Fig. 2). Both loss and accuracy con-
verged within 10 epochs, resulting in unweighted training
accuracy of 73.8% and validation accuracy of 73.6%. Al-
though accuracy plateaued after a few epochs, validation

Training Validation Test Ranking
Weighted Accuracy 0.501 0.467 0.525 33/40
Cost 14851 13836 15083 –

Table 1. Murmur detection task’s weighted accuracy score
(official Challenge score) and cost scores for our final se-
lected entry (team lubdub), including the ranking of our
team on the hidden test set.

Training Validation Test Ranking
Weighted Accuracy 0.825 0.756 0.835 –
Cost 14584 13836 14905 31/39

Table 2. Clinical outcome task’s weight accuracy score
and cost score (official Challenge score) for our final se-
lected entry (team lubdub), including the ranking of our
team on the hidden test set.

loss continued to decrease towards the end of training.

3.2. Challenge score

In the evaluation of the George B. Moody PhysioNet
2022 Challenge, our team’s (”lubdub”) model achieved a
weighted accuracy of 0.525 and a cost of 15083 on the
murmur detection task. Then on the outcome prediction
task, we achieved an accuracy of 0.835 and a cost of 14905.
Please see results in Tables 1 and 2. Our model was de-
veloped with Tensorflow-CPU version 2.4.1, and with our
entry’s submission, our training took 7 hours 46 minutes
with the model evaluation being completed in 4 hour and
12 minutes.

4. Discussion

In conclusion, our model demonstrates a proof-of-
concept end-to-end architecture that flexibly combines fea-
tures developed from physician knowledge with medical
historical basis with the raw spectrogram representation
of an input heart murmur audio time-series. Addition-
ally, we provide the first public Python implementation
of the widely-used PCG cardiac cycle segmentation algo-
rithm [6] in our Github repository, which can be utilized
by researchers in future works.

To further improve our algorithm, future research could
optimize the hyper-parameters used in the model, which
have not been carefully tuned. Extensive feature analysis
could reveal the salience of each feature in classifying mur-
murs and highlight informative dimensions to assist diag-
nosis. Most importantly, we hope our work will facilitate
and inspires the development of interpretable heart mur-
mur classification algorithms that are able to utilize physi-
cian information within the model design and implemen-
tation.
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